
Performance Engineering in
Data Grids
Erwin Laure� , Heinz Stockinger and Kurt Stockinger

CERN, European Organization for Nuclear Research, Geneva,
Switzerland

SUMMAR Y

The vision of Grid computing is to facilitate world-wide resource sharing among
distributed collab orations. With the help of numerous national and in ternational Grid
pro jects this vision is becoming realit y and Grid systems are attracting an ever increasing
user base. Ho wever, Grids are still quite complex soft ware systems whose e�cien t use is
a di�cult and error prone task.

In this pap er we presen t performance engineering tec hniques that aim to facilitate an
e�cien t use of Grid systems, in particular systems that deal with the managemen t of
large scale data sets in the tera- and petab yte range (also referred to as Data Grids).
These tec hniques are applicable at di�eren t layers of a Grid arc hitecture and we discuss
the to ols required at each of these layers to implemen t them. Ha ving discussed imp ortan t
performance engineering tec hniques we in vestigate how ma jor Grid pro jects deal with
performance issues particularly related to Data Grids and how they implemen t the
tec hniques presen ted.

1. In tro duction

Grid computing hasemergedover the past few yearsasa viable technique to enablelarge-scale
resourcesharing among geographically distributed collaborations forming a so-calledVirtual
Organization (VO). In particular, advancesin network technologiesthat signi�can tly increased
throughput over wide area connections paved the way to the Grid vision of truly world-
wide computing. Many communities already showed interest in leveraging Grid technologies
for coping with the ever increasing requirements in their �eld of expertise. Examples
include governmental organizations, biotechnology and health organizations, physicists, and
economists,to name but a few. The diversity of the user communities is reected in the way
Grid technology is used.The envisagedusagepatterns range from distributed supercomputing

� Correspondence to: Erwin.Laure@cern.c h
Contract/gran t sponsor: This work was partially funded by the Europ ean Commission program IST-2000-25182
through the EU DataGrid Pro ject.

PERF ORMANCE ENGINEERING IN DATA GRIDS 1

over high-throughput and data intensivecomputing to on-demandcomputing and collaborative
computing [15].

The existenceof basic Grid middleware such as Globus [14], Legion [17], or UNICORE [35]
allowed the construction of �rst Grid environments, and an ever increasingnumber of projects
in Europe, the U.S., and the Asia-Paci�c are looking into higher level Grid services and
customizedGrid solutions for speci�c application domains.The aim of the Global Grid Forum
(GGF) is to promote and support the development, deployment, and implementation of Grid
technologiesand applications via the creation and documentation of \b estpractices" - technical
speci�cations, user experiences,and implementation guidelines[16].

Despite all these e�orts Grid computing is not yet in the mainstream of computing,
mainly becauseof the complexity involved in wide area computing and the lack of high level
programming environments and associated performanceengineeringtools and techniques.

In this paper we discuss major performance engineering techniques in the �eld of data
intensive Grid computing (also referred to as Data Grid). These techniques aim to minimize
costs incurred by accessingdata in a Grid environment and thereby increasethe performance
of single applications and the throughput of the entire system. In order to systematically
categorize these techniques we �rst identify critical performance issuesin Data Grids and
present a generic layered Grid architecture in which our techniques can be implemented.
Subsequently , we examine a set of major Grid projects and discusshow they deal with the
performanceissuesidenti�ed.

The remainder of this paper is organizedas follows: in Section 2 we intro duce the concept
of Data Grids and the major performance issuesto be taken into account in this context,
we present some key application areas for Data Grids, and discuss a generic layered Grid
architecture. Section 3 presents performance engineering techniques we believe to be most
important to cope with the challenges intrinsic to Data Grids. The application of these
techniques in major Grid projects is studied in Section 4 and we conclude the paper with
someconcluding remarks in Section 5.

2. Data Grids
An increasing number of scienti�c disciplines are using large (potentially distributed)
collectionsof data reaching the tera- and even petabyte scale.Thesedatasetsneedto be made
seamlesslyavailable to large scaledistributed usercommunities who want to analyzethis data,
potentially using computationally expensive techniques.Grid architectures that deal with the
management of such large scaledata collectionsare typically referred to asData Grids [11,39].

In this section we �rst give an overview of Data Grid application domains and then present
the main characteristics of Data Grids pointing out the major issuespertinent to performance
engineering. Finally, we present a generic Data Grid architecture that allows us to deal
e�cien tly with thesecharacteristics.

Copyrigh t c 2004 John Wiley & Sons, Ltd. Concurr ency Computat.: Pract. Exper. 2004; 00 :0{0
Prepared using cpeauth.cls

2 E. LA URE, H. STOCKINGER, K. STOCKINGER

computing

data store

facilities
computing

data store

facilities
computing

data store

facilities

computing

data store

facilities
computing

data store

facilities
computing

data store

facilities

computing

data store

facilities

CERN

Regional
Centre (RC) 1

RC 3RC 2

University
University

University

desk tops

Figure 1. HEP Multi-Tier Architecture

2.1. Data Grid Application Domains

Data Grid technologiescan be leveragedin a variety of application domains. As motivating
exampleswebriey present the highlights of three application areasthat are tackled within the
EU DataGrid Project [12,13]: High Energy Physics,Bio Informatics, and Earth Observation.

High Energy Physics The High Energy Physics (HEP) communit y has the need of sharing
information, very large databases (several petabytes) and large computational resources
(thousands of fast PCs) throughout its centers distributed acrossEurope, and in several other
countries all over the world. One of the main concernsof the HEP communit y is to improve
the e�ciency and speed of their data analysis by integrating the processingpower and data
storage systemsavailable at distributed sites. The world's most powerful particle accelerator
(the Large Hadron Collider (LHC)) is currently being constructed at CERN and is expected
to produce several petabytes of data per year starting in 2007. Several thousand researchers
all over the world will accessthis data for their analysis; a multi-tier architecture has been

Copyrigh t c 2004 John Wiley & Sons, Ltd. Concurr ency Computat.: Pract. Exper. 2004; 00 :0{0
Prepared using cpeauth.cls

PERF ORMANCE ENGINEERING IN DATA GRIDS 3

Figure 2. CMS Environment

devisedfor distributing the data world wide (cf. Figure 1). An overview of the HEP communit y
requirements can be found in [40].

Practical experience, that the HEP communit y has gained in using Grid environments,
is reported for example in [9] where Monte Carlo simulation inside the CMS experiment is
described. Monte Carlo simulation is a necessarypre-requisite for physicists to validate their
analysis algorithms which will eventually be applied to the real data produced by the LHC.
The whole simulation consistsof multiple stepsinvolving di�eren t computational and storage
requirements. The �rst step (CMKIN) takesabout 0.5 secondson a 1 GHz PI I I machine and
produces a 50 KByte �le per physics event. The following (CMSIM) step is several orders
of magnitudes more complex, producing about 1.8MB of data and taking about 6 minutes
per physics event. Both steps are processedin a pipelined fashion, each stage of the pipeline
processing125 physics events. In total, some500 million events need to be produced before
2007.The whole simulation is automated within the CMS production environment consisting
of a database RefDB keeping track of the simulation requests and progress, an automatic
submissionsystem IMPALA/BOSS and the BOSS databasekeeping track of the progressof
the individual jobs. Figure 2 illustrates how this environment is integrated with a Grid system
(in this case the EDG system, cf. Section 4.1). In the �rst step, the CMKIN jobs run on
computing resourcesavailable for CMS simulation, the output �les are stored on associated
storageresourcesand a replica manager (using the replica catalog system) keepstrack of the
�le location. Subsequently , CMSIM jobs are directed by the workload management system to

Copyrigh t c 2004 John Wiley & Sons, Ltd. Concurr ency Computat.: Pract. Exper. 2004; 00 :0{0
Prepared using cpeauth.cls

4 E. LA URE, H. STOCKINGER, K. STOCKINGER

Figure 3. Parallel Biomedical Image Reconstruction

computing resourceshaving accessto the previously produced �les. Progressis monitored in
the CMS BOSS database.

Bio-Informatics The �eld of Bio-Informatics (also known as Computational Biology) has
led to numerous important discoveries and practical applications and is consideredas one of
today's most promising and expanding scienti�c �elds. The recent explosionof data, acquired
by automated genesequencersand other experimental techniques, requires vast amounts of
computing power to analyze the biological functions of genes.There is also a main di�erence
to the two other applications mentioned here sinceBio-Informarics deploys many traditional
parallel computing models (incl. the usage of MPI). Additionally , thousands of databases
contain already collected molecular data, which could be correlated and exploited. Other
examples of biomedical applications include mining of biomedical databasesand image re-
construction and comparison.

Image reconstruction, for instance, is a computationally intensive task that requires the
exploitation of massive parallelism. The reconstruction of high resolution (10242) 2D objects
takesabout 3 days; 3D imageswith the sameresolution (10243) will take about 278 yearson
a standard sequential machine. Fortunately, massive parallelism can be exploited quite easily
by running the reconstruction only on subsetsof the original image (cf. Figure 3) yielding a
parallel e�ciency of more than 80% [38].

Content basedqueriesof medical images,on the other hand, �rst require analyzing image
metadata to reducethe search space.Subsequently analysisalgorithms arerun on the candidate
imageswhich may be distributed on many biomedical sites. This kind of search is typically
performed through biomedical Grid portals as depicted in Figure 4.

Today, the Bio-Informatics communit y lacks the necessaryinfrastructure to processall this
data. Therefore, the development of an international infrastructure, which will provide the

Copyrigh t c 2004 John Wiley & Sons, Ltd. Concurr ency Computat.: Pract. Exper. 2004; 00 :0{0
Prepared using cpeauth.cls

PERF ORMANCE ENGINEERING IN DATA GRIDS 5

Figure 4. A Grid Portal to Biomedical Image Databases

means of correlating large amounts of data in a transparent way, is of great interest. More
information on biomedical requirements can, for instance, be found in [37].

Earth Observation Earth Observation Scienceapplications often require large computational
power and accessto large data �les stored in geographically distributed archives [41]. One
exampleof such applications is GOME (Global OzoneMonitoring Experiment) with the goal
to study ozonedistribution patterns in the Earth's atmosphereover a given period of time. In
1995ESA launched the European Research Satellite 2 (ERS-2) including GOME.

Each day 14 data �les of 15 MB are acquired. The complete data-set acquired by GOME
sinceJune 1995amounting to 77 GB/y ear is contained in the ESA massstoragearchive. More
recent instruments produceup to 5GB/da y. The total data volume stored in the ESA archives
amounts to more than 800 TB. The data is processedand validated against ground based
measurements (collected by LID AR devices)to produce a global map of ozoneconcentration
and distribution. Figure 5 illustrates how the raw satellite data is processedto socalled Level2
products which are subsequently validated and visualized.Someindication of the data volumes
involved can alsobe found in Figure 5. A critical issuefor running this kind of applications on
a Grid environment is the caching of Level2 data such that it doesnot have to be re-produced
for every single query.

Copyrigh t c 2004 John Wiley & Sons, Ltd. Concurr ency Computat.: Pract. Exper. 2004; 00 :0{0
Prepared using cpeauth.cls

6 E. LA URE, H. STOCKINGER, K. STOCKINGER

Figure 5. GOME Analysis Architecture

2.2. Data Grid Characteristics

Data Grids are a specialization in the general �eld of Grid computing dealing with the
management of large amounts of data in the tera- and petabyte scale. Such large data
volumesneedto be stored on hierarchical storagedevices,including tape basedmassstorage
systems,which are, for the time being, quite heterogeneousin nature. Network performance
is of paramount importance when dealing with large datasets over the wide area. Finally,
Data Grid applications are typically high throughput applications rather than traditional high
performanceones.In summary, the key characteristics of Data Grids include:

� Large datasets
� Heterogeneousstoragesystems
� Impact of network characteristics
� High throughput computing

We are now going to discuss each of these items in more detail in order to derive the
requirements for the performanceengineeringtechniques we present in the following section.
For more de�nitions on Grid Data Management issues,we refer the reader to [31].

Large datasets Although the common denominator of Data Grid applications is that they
deal with large amounts of data, there are signi�can t di�erences with respect to data creation

Copyrigh t c 2004 John Wiley & Sons, Ltd. Concurr ency Computat.: Pract. Exper. 2004; 00 :0{0
Prepared using cpeauth.cls

PERF ORMANCE ENGINEERING IN DATA GRIDS 7

and accesspatterns. For instance,data in High Energy Physicsis producedat a single location
(the detector) while biomedical data mining applications leveragea large number of already
existing databaseswhich are located virtually anywhere in the world. Accesspatterns range
from sequential to chaotic schemesand may be read only or read/write access.Data Grid
architectures are required to deal with all these di�eren t characteristics, however, better
performancecan be obtained if the usagepatterns of certain applications are known a-priori
and major gains can be made if data is usedprimarily in write once,read often mode.

Heterogeneous storagesystems A distinguishing feature of Grid computing is that it is based
on heterogeneousenvironments. This is true for computational (clusters, SMPs, DMMPs) as
well as storagedevices.Hierarchical storagedevices,in particular, exhibit huge di�erences in
accesslatencies,ranging from secondsto several hours, depending whether the data is on disk
or tape and whether the tape is already mounted or not. It is of paramount importance to any
Data Grid architecture that theselatency variations are appropriately taken into account [33].
Moreover, most hierarchical storage systemsare already well established and used for daily
production outside the Grid. Grid middleware is therefore required to interface to theselegacy
systemswith as little perturbations as possible.

Impact of network characteristics Dealing with large datasets over wide area networks
requires the exploitation of high performance networks in order to avoid bottlenecks. With
recent advances,network bandwidth signi�can tly increasedenabling fast and reliable data
transfer; for instance, GridFTP [1] allows for parallel streams for increasing the throughput
of data intensive applications. However, many high performancedistributed applications use
only a small fraction of the available bandwidth due to improperly tuned network settings.
Even though the networking communit y has beenworking for a long time on TCP bu�er size
tuning and parallel streams, these �ndings are not yet widely used in the Grid communit y.
In addition, network resourcesare mostly not entirely dedicated to Grid computing which
intro ducesadditional uncertainties.

High throughputcomputing Data Grid applications are typically more interested in achieving
high throughput than on exploiting the highestpossibleperformancewithin a singleexecutable.
ClassicalHigh Performance Computing (HPC) tries to minimize the execution time of a single
program by distributing the computational workload amongmultiple CPUs, often on massively
parallel architectures. This mode of computing is also referred to as parallel computing. Many
techniques and programming languageshave been developed that help the programmer in
parallelizing applications [2,20,26,29].

On the other hand, High Throughput Computing (HTC) is more concerned with
environments that candeliver largeamounts of processingpower over largeperiodsof time [25].
It is more concernedwith the overall performanceof a set of applications over time rather than
the performanceof a singleapplications. Of course,an adequateperformanceof the individual
applications is ultimately also important for HTC, but the description of related techniques
is beyond the scope of this paper and can be found in the traditional HPC literature [2].
Grid environments (although potentially being comprised of HPC components [23,24]) are
typically used in a HTC style since they encompassmany heterogeneousresourcesfrom

Copyrigh t c 2004 John Wiley & Sons, Ltd. Concurr ency Computat.: Pract. Exper. 2004; 00 :0{0
Prepared using cpeauth.cls

8 E. LA URE, H. STOCKINGER, K. STOCKINGER

Application

Collective

Resource

Connectivity

Fabric

Figure 6. The Layered Grid Architecture

di�eren t administrativ e domainswhich are usedby large heterogeneoususergroups.However,
aspointed out Bio-Informatics applications often follow also the traditional High Performance
computing approach.

2.3. A Data Grid Arc hitecture

A Data Grid architecture is a specialization of a generalGrid architecture. It contains speci�c
components to e�cien tly deal with the problems pertinent to data intensive computing, such
as data storageand transport mechanisms,high performancenetworks, and higher level tools
for data and workload management, which are intro duced below.

A genericGrid architecture is de�ned in [21] and consistsof multiple layers as depicted in
Figure 6. Data Grid requirements are in particular dealt with by a set of components belonging
to each of these layers. In the following paragraph we briey list thesecomponents and their
associated layersbeforewe discusstheir implications to Data Grid performanceengineeringin
Section 3 in greater detail. There are certainly other components that have a large impact on
the overall performanceof a Data Grid. However, we focus deliberately on the onesconcerned
with data handling to give the discussionan appropriate focus.

� Components on the Fabric layer implement local, resource-speci�c operations. In Data
Grids we are particularly concerned with local data storage systems and their
interaction with local compute resources.

� The Connectivity layer interconnectsGrid resourcesand facilitates data and information
exchangeamong them. Data Grids usually require e�cien t net work proto cols.

� In the Resource layer, which is providing information and management protocols,a Data
Grid architecture is concernedwith e�cien t data transp ort proto cols.

� Multiple Grid resourcesare coordinated by components of the Collective layer. Here
we �nd global data managemen t systems that provide a global view of the data
stored in a Data Grid aswell asworkload managemen t systems that perform global
scheduling.

Copyrigh t c 2004 John Wiley & Sons, Ltd. Concurr ency Computat.: Pract. Exper. 2004; 00 :0{0
Prepared using cpeauth.cls

PERF ORMANCE ENGINEERING IN DATA GRIDS 9

Layer Comp onent
Fabric Data Store
Connectivity Networking
Resource Data Transport
Collective Data Management

Workload Management

Table I. Data Grid Layers and SelectedComponents

� Finally, applications employ the services provided in these layers, mainly from the
collective layer, but potentially alsoaccesslower level services,either directly or through
application domain speci�c portals.

Table I summarizes the components important to Data Grids and their mapping in the
layers of a generalGrid architecture.

3. Performance Engineering Techniques

Giventhe characteristicsof Data Grid applications discussedabove,the questionthat will guide
us throughout the remainder of this paper is as follows: Which techniquescan be leveragedto
optimize the usageof Grid resourcesand what performance information is a pre-requisite to
thesetechniques?

We deliberately focus on techniques related to data handling; performance engineering
techniques related to CPU usageare out of the scope of this paper.

The following areas of performance engineering techniques can be identi�ed as the ones
having major impact on the overall performanceof a Data Grid:

� Data Access,
� Networking,
� Replica Management,
� Replica Optimization, and
� Scheduling.

In discussingthesetechniqueswealsoidentify components that are required in the individual
layers of a Data Grid architecture to facilitate them.

3.1. Data Access

For a Data Grid, accessto large amounts of data is vital, where data is usually distributed
and sometimesreplicated. Before we go into detail with global data access and replication, we
needto discusslocal data accessand where data is actually stored.

Several kinds of storage technologiescan be consideredranging from simple �les systems
to complex (distributed) databasemanagement systems.Due to the heterogeneity of existing

Copyrigh t c 2004 John Wiley & Sons, Ltd. Concurr ency Computat.: Pract. Exper. 2004; 00 :0{0
Prepared using cpeauth.cls

10 E. LA URE, H. STOCKINGER, K. STOCKINGER

storagetechnologies,Grids aim for a unique interface to data and storagesystems.In addition,
a local data store at a given site can consist of secondaryand tertiary storage deviceswith
di�eren t characteristics as regardsaccesslatency, availabilit y and lifetime.

Local data accessneedsto take care of storing and retrieving data in an optimal way, i.e.
performanceengineeringtechniques are required, especially if hierarchical storagedevicesare
usedwherecaching techniquesare applied in order to deal with fast data access.For example,
a �le needsto be opened for read access;another �le needsto be stored on a fast cache and
then written to a permanent, tertiary storagesystem.Apart from allowing accessto data it is
also important to guarantee the required spaceto store the data produced by an application.
This can be achieved by space reservation on the target storage resource.Standards like the
StorageResourceManager (SRM) [8] take care of such functionalities and their optimization
(seelater in this paper).

Other important points are the data accessgranularity as well as remote data access (also
called remote I/O) over a wide area network. Typically, the data accessgranularit y is �le
based.However, also object baseddata accessgranularities are available [31]. This inuences
the way remote data accessis done.Storageapplianceslike SRM are implemented in the fabric
layer. In the remainder of this paper, we will mainly focus on the �le level granularit y and
thus mainly talk about �le accessand �le replication.

3.2. Net working

Dealing with large datasets over wide area networks requires the exploitation of high
performancenetworks in order to avoid bottlenecks. Traditional techniques are multi-casting
or allowing for parallel streamsfor �le transfers. One goal of a typical Data Grid application
is to identify the sites with the best network connections with respect to speci�c sites. For
instance,output data should be stored at thosesites that have the highest network bandwidth
to the production site. In addition, �les should be retrieved from those sites that have the
highest network bandwidth to a particular destination site. Note that network performance
only is not an optimal criterion for selectingsitessincethe performanceand availabilit y of data
servers need to be taken into account, too [32]. However, for a �rst approximation, network
performanceis important for deciding where to sendor from where to retrieve �les.

In order to allow for optimal network usage,toolsmust bedeployedthat monitor the network
tra�c betweenvarious Grid sites. Thesetools typically reside in the connectivity layer.

3.3. Replica Managemen t

In a Data Grid, data is typically stored in �les which can be spread among geographically
distributed Grid sites. The execution time for a job may vary considerably, depending on the
computing resourcechosenfor job execution, the location of data �les to which the job requires
access,and the data accesspatterns.

Data replication is consideredto be an important technique to reduce data accesslatency
(for reading data) and to increase the robustness of Grid applications. This results in the
reduction of job execution time. In more detail, replication involves the creation of identical
copiesof data �les and their distribution over various Grid sites.

Copyrigh t c 2004 John Wiley & Sons, Ltd. Concurr ency Computat.: Pract. Exper. 2004; 00 :0{0
Prepared using cpeauth.cls

PERF ORMANCE ENGINEERING IN DATA GRIDS 11

Data replication is widely usedin databasemanagement aswell as in distributed systemsfor
performance and fault tolerance reasons.However, the Grid communit y tackles the problem
of replication in a slightly di�eren t way [30]. Let us briey discussthe di�erences with respect
to performanceoptimization.

Typical transaction-baseddatabasemanagement systemsare designedto provide consistent
states of data for concurrent updates. One of the most important replication features is to
provide update synchronization among replicated data items. Hence, databasereplication is
often a trade-o� betweensupporting high performanceread accessby increasingthe replication
factor [32] (i.e. the number of identical replicas for a given �le) and thus reducing the write
performancedue to higher update requirements. Moreover, traditional databasemanagement
systemsare deployed in the local area with moderate amounts of data.

On the other hand, in a Data Grid, data volumes reach up to several petabytes. What
is more, data produced by typical large scale scienti�c experiments is often read-only and
thus no update synchronization like that for databasesis required. This allows increasingthe
replication factor for both speedingup readperformanceand increasingfault tolerancewithout
the trade-o� of keepingmultiple replicas in synchronization.

Replica management involvesa number of low level steps: the data needsto be physically
copied using appropriate transport mechanisms, the correctness of the copy needs to be
checked, the location of replicas needsto be stored in replica catalogs,and �nally , consistency
among replicas needsto be preserved both in caseof spurious inconsistencies(such as in case
of hardware failure or attacks) and in caseof writable replicas.Components in the fabric layer
such ashomogeneousdata accessmechanisms,e�cien t data transport protocolsin the resource
layer, and replica catalogs in the collective layer are required to ful�l these tasks. However,
higher level replica management servicesshouldbe provided by the Data Grid middleware that
hide most of the complexity of the underlying system and provide the user with a uniform
interface. Theseservicesare found in the collective layer.

3.4. Replica Optimization

One of the goals of replica optimization is to minimize �le accesstimes by pointing access
requests to appropriate replicas and pro-actively replicating frequently used �les based on
accessstatistics gathered. Replica optimization techniquescan thus be divided into:

� replica selection
� replica initiation (automatic creation/deletion)

Replica optimization is tightly coupled with replica management. Often, optimizers are an
integrated part of higher level replica management systemsand thus found in the collective
layer.

Replica Selection The replica selectionaspect of replica optimization aims to select the best
replica with respect to network and storage accesslatencies. In other words, if for a given
�le several replicas exist, the optimization algorithm determines the replica that should be
accessedfrom a given location. Similarly, the algorithm may also be used to determine the
best location for new replicas, i.e. where to store additional replicas of an existing �le.

Copyrigh t c 2004 John Wiley & Sons, Ltd. Concurr ency Computat.: Pract. Exper. 2004; 00 :0{0
Prepared using cpeauth.cls

12 E. LA URE, H. STOCKINGER, K. STOCKINGER

The performance improvement achieved by using a replica optimizer (a Grid service that
takescare of replica selectionand initiation) critically dependson the designof an algorithm
that selectsone of the replicas of the requestedresource.This topic was intensively discussed
in the context of Internet services[19] and distributed databasemanagement systems.Each
of the replica selection algorithms may be designed with di�eren t goals, di�eren t metrics
and di�eren t mechanisms for measuring the metrics that are used. For instance, the replica
selectionalgorithm may aim at maximizing network throughput, reducing the network tra�c
on \exp ensive" links, or reducing the responsetime of jobs.

Most replica selectionalgorithms aim at selectionof \close" replicasto either reduceresponse
time or the load on network links. Closenesscan be de�ned by various metrics such asresponse
time, latency, round-trip time, network bandwidth, number of hops, or geographicproximit y.

Replica Initiation The goal of replica initiation is to trigger replication and thus the creation
of new replicas dynamically. The decision about when to create new replicas can be based
on the �le accesshistory in order to optimize data locality for frequently requested�les. This
assumesthat basedon historical events wecanpartially predict future �le access.By increasing
the replication factor of a �le, one can achieve better load balancing of �le requests to less
loaded sites but also fault tolerance in casesomesites becomeunavailable.

In addition to creating new replicas, a replica optimizer can also decide to delete existing
replicas due to several reasons:a �le is infrequently requested,accessspaceis required etc.
In this way, the replica optimizer can play a role in optimizing storagespacebasedon access
patterns of a �le.

3.5. Scheduling

Scheduling in Grid environments (i.e. global scheduling) is a much more complex task than
scheduling on local clusters (i.e. local scheduling) which is accomplishede.g. by local batch
schedulerslike LSF, PBS, or the Maui scheduler. This is due to a number of inherent features
of Grid environments not present in typical HPC, cluster, or local systems:

� resourcesbelong to di�eren t administrativ e domains imposing di�eren t local policies;
� someresourcesmay be restricted to accept only a certain subset of jobs managedby a

Grid scheduler; similarly, not all resourcesaccessiblemay qualify to run a Grid job due
to certain job requirements;

� resourcesmay have di�eren t performance characteristics, in particular with respect to
CPU performance,storagesystem access,and network connectivity;

� Grid schedulers do not have full control over the resources,they do not belong to the
Grid scheduler;

� Grid schedulers do not have full information on all jobs in the system: there will be
multiple Grid schedulers as well as local schedulers concurrently scheduling the same
resources.

As a consequence,a Grid scheduler typically performs the following steps [28]:

1. Resource Discovery: The set of accessibleresourcesis �ltered according to authorization
constraints and application requirements.

Copyrigh t c 2004 John Wiley & Sons, Ltd. Concurr ency Computat.: Pract. Exper. 2004; 00 :0{0
Prepared using cpeauth.cls

PERF ORMANCE ENGINEERING IN DATA GRIDS 13

2. SystemSelection: More detailed information on the state of the systemsselectedby the
previous step is sought (e.g. current system load or status of queues)basedon which a
�nal decisionon where to run the jobs is taken.

3. Job Execution: Eventually , the job is to be executed at the chosen site. This step
may involve advancedreservation, job preparation, and job monitoring. AdvancedGrid
schedulers may re-consider their decision dynamically and re-schedule jobs if certain
circumstanceslike high system load prevent the job from being executede�cien tly .

In a Data Grid the task of the Grid scheduler is even more di�cult since job execution
e�ciency not only dependson the computational characteristics of the execution site but also
on the data accesscharacteristics. Hence,a Grid scheduler has to take into account not only
the computational requirements of a job but also its data requirements when making the
scheduling decision.The additional stepsthe scheduler has to perform can be clustered to the
main traditional stepsas follows:

1. Resource Discovery: explore the location of all the input data the job requiresas well as
storageresourcesthat are capableof storing the output data.

2. SystemSelection: the accesstime (mainly a�ected by latency and bandwidth) to input
data and output data location needsto betaken into account whenmaking the scheduling
decision.The replication systemsdiscussedabove, in particular the replica optimization
systems,may assist the Grid scheduler in this task and replicate data to places from
where it can be accessedmore e�cien tly .

3. Job Execution: jobs requiring frequent accessto data are particularly sensitive against
uctuations in network performance.It is therefore important to dynamically re-consider
the scheduling decisionstaken as well as the decision from where to accessdata. This
re-consideringmay result in job re-scheduling and/or replication of data to new places
on the y .

Grid schedulersare typically part of Workload ManagementSystemsresiding in the collective
layer. Thesesystemsnot only perform the scheduling task but also monitor the status of jobs
and provide transactional mechanismsto cope with problems during job execution.

4. Protot yp e Systems

Many projects are currently building Grid infrastructures including middleware solutions
suitable for performance engineering in Grids. In this section we review some of the major
Grid middleware projects with respect to the issuesdiscussedabove. We selectedprojects that
explicitly deal with Data Grids. Note that our selection is by no meanscomprehensive and
that the four projects do not necessarilyhave the sameaims. For example,Globus and Condor
typically provide more lower level middleware whereasEDG and SRB are more higher level
tools. After the discussionof the individual projects we provide a summary of our �ndings.

Copyrigh t c 2004 John Wiley & Sons, Ltd. Concurr ency Computat.: Pract. Exper. 2004; 00 :0{0
Prepared using cpeauth.cls

14 E. LA URE, H. STOCKINGER, K. STOCKINGER

4.1. Europ ean DataGrid (EDG)

http://www.edg.o rg

Data Access EDG has a hierarchical storagemodel where data can resideon three di�eren t
levels,namelyon disk, on the disk cacheof a massstoragesystem,and on tape.Data is managed
via a unique interface that is called Storage Element (SE). The SE has similar functionalit y
to a Storage Resource Manager (SRM) [8], a proposal for a uni�ed interface to hierarchical
storagesystems.The main purposeof the SE is data and spacemanagement.

In addition, the SE provides performance information about the accesslatencies of �les
with various sizes.The accesslatency is calculated basedon the location of the �le, �le access
history, and job queuesof the massstoragesystem.

Networking The network tra�c on the EDG testbed is monitored at certain intervals using
iperf [34]. This information is usedfor estimating the �le transfer time betweenvarious siteson
the wide area.The calculation of the total �le accesslatency consistsof the estimated transfer
time and the accesslatency of the underlying storagesystem.

Replica Management The Replica Management Servicecalled Reptor [18,22] provides access
to fast and secure transfer mechanisms based on GridFTP . Replica information is kept
consistent in the distributed replica catalog referred to as the Replica Location Service[10].

Reptor managesdata and associated meta-data by taking into account information provided
by several Grid monitoring tools such as the Information Serviceand the Network Monitor.
The implementation of Reptor is basedon the web serviceparadigm in accordancewith the
emergingOpen Grid ServiceArchitecture.

Replica Optimization Within the replication framework, optimized replica selection is
achieved by calculating the accesslatenciesof the replicas and choosing the one with minimal
accesscosts.Both network transfer times and storageaccesslatenciesare taken into account.

Scheduling The goal of EDG's Workload Management System (WMS) is to manage Grid
resourcesconveniently , e�cien tly and e�ectiv ely [36] based on the following components:
the User Interface, the ResourceBroker, the Job Submission Service, and the Logging and
BookkeepingService.

The user interacts with the WMS via a User Interface that allows, among others, to submit
jobs, control the execution of a job, and retrieve a job's output. A job is represented by a
Job Description that is expressedvia a Job Description Language(JDL). Jobs may either be
sequential or parallel applications using MPI [26].

The task of the ResourceBroker is to �nd the best match betweenthe requirements of the
jobs and the available Grid resources.In order to perform this optimization, the Resource
Broker consults the Replica Management Serviceto retrieve information about the location of
required input �les and the Information Serviceabout the current load of the computing and
storageresources.The result of the optimization is a matching computing resourcewhere the
executing job has accessto all resourcesspeci�ed in the Job Description Language,such as

Copyrigh t c 2004 John Wiley & Sons, Ltd. Concurr ency Computat.: Pract. Exper. 2004; 00 :0{0
Prepared using cpeauth.cls

PERF ORMANCE ENGINEERING IN DATA GRIDS 15

CPU requirements or storagespace.It is worth noting that parallel applications are scheduled
to run on a single Grid site (which may be a large cluster or HPC system) and are not
distributed among multiple sites.

4.2. Globus

http://www.globu s.o rg

Data Access Globus provides a number of tools for data management in Grid systems.
GridFTP [1] is a high-performance,secureprotocol basedtool for parallel data transfer, partial
�le transfer, and third-part y (server-to-server) data transfer. Globus does not support mass
storagesystemaccess.In addition, a reliable �le transfer service(RFT) is included in the latest
Globus version.

Networking Globus doesnot support networking optimization.

Replica Management Globus also includes tools for managing data replicas, namely the
Replica Catalog and the Replica Manager. Currently , Globus supports two versions of
catalogs, an LDAP based and an SQL-based a vor. The latter is called RLS - (Replica
Location Service) [10] and was jointly designedand developed betweenGlobus and the \Data
Management Workpackage" of the EU Data Grid Project to maintain distributed information
of replicas. The Replica Manager is basedon GridFTP and the LDAP basedreplica catalog
to provide basic replica management features.

Replica Optimization Globus doesnot support replica optimization.

Scheduling The Globus ResourceAllo cation Manager (GRAM) processesthe requests for
resourcesfor remote application execution, allocates the required resources,and manages
the active jobs. In addition, GRAM provides updated information about the capabilities and
availabilit y of the computing resourcesto the Metacomputing Directory Service (MDS), i.e.
the Information Service.

GRAM provides an API for submitting and canceling a job request, as well as checking
the status of a submitted job. The speci�cations are written by the user in the Resource
Speci�cation Language(RSL), and is processedby GRAM as part of the job request.

However, data locality issuesare not considered in the scheduling phase. What is more,
automatic job scheduling is not supported.

4.3. Condor

http://www.cs.wi sc. edu/ condor/

Data Access Storage requirements of Condor jobs are managed by NeST [7], which is a
exible, software-only storage appliance. NeST provides a generic data transfer architecture
that supports multiple data transfer protocolssuch asGridFTP and NFS. Due to its dynamic,

Copyrigh t c 2004 John Wiley & Sons, Ltd. Concurr ency Computat.: Pract. Exper. 2004; 00 :0{0
Prepared using cpeauth.cls

16 E. LA URE, H. STOCKINGER, K. STOCKINGER

self-adapting behavior, it runs e�cien tly on a wide rangeof hardware and software platforms.
Moreover, NeST allows for management of storage space,mechanisms for resourceand data
discovery, user authentication and quality of service.

NeST doesnot support accessto massstoragesystems.

Networking Condor doesnot support networking optimization.

Replica Management Condor doesnot support replica management.

Replica Optimization Condor doesnot support replica optimization.

Scheduling Condor-G [4] is a task broker to scheduleand managethousandsof jobs in a typical
distributed Grid computing environment. It provides job monitoring, logging, noti�cation,
policy enforcement, fault tolerance, credential management.

Dependenciesbetween jobs are managedby DAGMan (Directed Acyclic Graph Manager)
which is a meta-scheduler for Condor. A directed acyclic graph (DAG) can be usedto represent
a set of programswhere the input, output, or execution of oneor more programs is dependent
on oneor more other programs.DAGMan is responsiblefor scheduling, recovery, and reporting
for the set of programs submitted to Condor.

In Condor, data transfers for copying, replicating and staging are called Data Placement
(DaP) activities. Currently , a DaP scheduler named Stork is being developed to intelligently
schedule both computational and data jobs to increase disk usage and throughput while
decreasingI/O latencies.

Note that Condor doesnot support automatic scheduling as it is done in EDG.

4.4. SRB

http://www.npaci .ed u/ DICE/SRB

Data Access The StorageResourceBroker (SRB) [3] is a client-server basedmiddleware tool
which provides distributed clients with uniform accessto di�eren t types of storage devices,
diversestorageresources,and replicated data setsin a heterogeneouscomputing environment.

SRB provides its own MassStorageSystem(MSS) that enablesusersto economicallybuild
their own massstoragesystem in which data migrate automatically betweencache and tape.
In addition, it is integrated with the High PerformanceStorage System (HPSS) for archival
storage.

Networking By incorporating automatic parallel data transfers the SRB optimizes and
matches the transfer to the network and server export rates, resulting in robust and fast
transfers.

Replica Management The SRB client-server system solves many problems associated with
traditional �le systems. The SRB supports virtual collections consisting of digital entities
scattered acrossdistributed, heterogeneousstorageresources,including �le systems,archives,

Copyrigh t c 2004 John Wiley & Sons, Ltd. Concurr ency Computat.: Pract. Exper. 2004; 00 :0{0
Prepared using cpeauth.cls

PERF ORMANCE ENGINEERING IN DATA GRIDS 17

and databases.These di�erences are transparent to users, negotiating all protocols, access
permissions,etc. acrossmultiple sites.

Metadata about the �les is handled by the MCAT metadata catalog which allows for
searching, accessing,and managing collections of data. MCAT is implemented with relational
databasetechnology and has beenported to work with Oracle, SQLServer, DB2, Sybaseand
Postgres.

The SRB synchronizesreplicated data to ensureaccuratemirroring and reliable �le transfers
using a persistent transfer mode that automatically retries transfers as needed.

Replica Optimization A so-called SRB Grid Brick provides a cost-e�ective, uniform data
management environment using a Linux PC running only SRB to manage1 to 2 terabytes
of local disk. One can group multiple Grid Bricks into a single logical resourcein order to
guarantee a single �le space. Grid bricks can be distributed over a network but will still
appear as a single resource.

Replica selectionis basedon storagelatency, however, network basedreplica selectionis not
supported.

Scheduling Using distributed SRB Grid Bricks, users can employ seamless,round-robin,
random placement load-sharing. However, automatic wide area scheduling is not supported.

4.5. Summary of Observ ations

Pro ject Data Access Net working Replica Mgm t. Replica Opt. Scheduling
EDG yes yes yes yes yes
Globus partially no yes no partially
Condor partially no no no partially
SRB yes partially yes partially partially

Table I I. Performance Engineering Methods of SelectedProtot ype Systems.

On having discussedthe main Grid middleware implementations, wewill now summarizethe
main performanceengineeringapproachesof these projects. Table I I provides an overview of
the performancemethods that are implemented in the selectedprotot ype systemswe discussed
before. In particular, we identi�ed the following levels of performanceoptimization:

� Access estimation and optimization of storage devices: especially for data intensive
applications accesslatenciesto tertiary storagesystemsare the main bottleneck. Access
estimateshave to take into consideration disk and tape latenciesand turn around times
of the batch systemsthat queuedata intensive jobs. Important optimization techniques
include intelligent caching of frequently used�les on thosestoragesystemsthat have, on
the one hand, the lowest accesslatencies,but are, on the other hand, closeto the CPU
that request this data.

Copyrigh t c 2004 John Wiley & Sons, Ltd. Concurr ency Computat.: Pract. Exper. 2004; 00 :0{0
Prepared using cpeauth.cls

18 E. LA URE, H. STOCKINGER, K. STOCKINGER

� Access estimation and optimization of network devices: Typical approaches include
monitoring the network tra�c and supporting parallel streamsfor �le transfers.

� Replica management: One of the goals is to replicate �les to those placeswhere �les are
accessed.

� Replica optimization: Based on accesslatencies and network bandwidth estimates,
replicas are selected.

� Job scheduling: Jobs are scheduled to those places that have the best CPU capacities
taking into account data localities. Typical goalsare to optimize the throughput of the
wholesystemand balancethe load in an intelligent way over the available Grid resources.

Grid middleware is very complex software that has to deal with all the uncertainties and
changing characteristics of a Grid environment. To better analyze the impact of certain
middlewarecomponents, Grid simulators havebeendeveloped.For instance,insideEDG a Grid
simulator called OptorSim [5,6] has been developed in order to understand the performance
issuesof a complex Data Grid environment. The simulator is based on the topology of a
typical Data Grid and comprisesseveral scheduling and data replication algorithms to study
the performanceof Grid jobs with various accesspattern characteristics. In addition, one can
alsostudy the impact of various network con�gurations and storagesystems.Oneof the goalsis
to provide a set of Grid benchmarks similar to well establishedbenchmarks from the database
communit y to evaluate the performanceof query optimizers.

Within U.S. Grid projects, a simulator with similar goalswas implemented which is called
ChicagoSim[27].

5. Conclusions

In this paper we provided an overview of Grid performance engineering mechanisms for
optimizing the performance of tasks (jobs) within a typical Data Grid. We categorized the
techniquesinto �v e aspects:data access,networking, replica management, replica optimization
and scheduling. Next, weevaluated four selectedGrid protot ypeimplementations and discussed
the currently implemented performanceengineeringapproaches.

The goal of this paper was to provide a characterization and a set of mechanisms for
improving the performanceof currently deployed Data Grids. In addition, theseperformance
engineering tools can serve as the basis for establishing a framework to compare the
performanceof di�eren t Grid environments. Our vision is to create typical Grid benchmarks
similar to what is known in the databasecommunit y for comparing the performanceof query
optimizers of di�eren t software vendors. The categorization work in this paper is a vital
prerequisite for achieving this goal.

A CKNO WLEDGEMENTS

We would lik e to thank our colleaguesfrom the EU DataGrid project for their support throughout
this work and many stimulating discussionsaswell as Ian Willers (CERN) for proofreading this paper.

Copyrigh t c 2004 John Wiley & Sons, Ltd. Concurr ency Computat.: Pract. Exper. 2004; 00 :0{0
Prepared using cpeauth.cls

PERF ORMANCE ENGINEERING IN DATA GRIDS 19

REFERENCES

1. W. Allco ck, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, S. Meder, and S. Tuecke. GridFTP Proto col
Speci�cation. GGF GridFTP Working Group Document, September 2002.

2. G. Andrews. Concurr ent Programming: Principles and Practice. Benjamin/Cummings, 1991.
3. C. Baru, R. Mo ore, A. Rajasekar, and M. Wan. The SDSC Storage Resource Brok er. In CASCON'98

Conference, Toronto, Canada, November 1998.
4. J. Basney, M. Livn y, and T. Tannenbaum. High Throughput Computing with Condor. HPCU news,

Volume 1(2) , 1(2), June 1997.
5. W. Bell, D. Cameron, L. Capozza, P. Millar, K. Stockinger, and F. Zini. Simulation of Dynamic Grid

Replication Strategies in OptorSim. International Journal of High Performanc e Computing Applic ations ,
17(4), in prin t.

6. W. Bell, D. Cameron, R. Carvajal-Schia�no, P. Millar, K. Stockinger, and Floriano Zini. Evaluation of
an Economy-Based File Replication Strategy for a Data Grid. In International Workshop on Agent based
Cluster and Grid Computing at CCGrid 2003, Tokyo, Japan, May 2003.

7. J. Bent, V. Venkataramani, N. LeRoy, A. Roy, J. Stanley, A. Arpaci-Dusseau, R. Arpaci-Dusseau, and
M. Livn y. Flexibilit y, Manageabilit y, and Performance in a Grid Storage Appliance. In Symposium on
High Performanc e Distribute d Computing , Edin burgh, Scotland, July 2002.

8. I. Bird, B. Hess, A. Kowalski, Don P., R. Wellner, J. Gu, E. Oto o, A. Romosan, A. Sim, A. Shoshani,
W. Hoschek, P. Kunszt, H. Stockinger, K. Stockinger, B. Tierney , and JP. Baud. Srm join t functional
design. Global Grid Forum Document, GGF4, Toronto, February, 2002.

9. D. Bonacorsi, P. Capiluppi, A. Fanfani, et al. Running CMS Software on GRID Testbeds. In Computing
in High Energy and Nuclear Physics, CHEP03 , La Jolla, CA, USA, March 2003.

10. A. Chervenak, E. Deelman, I. Foster, L. Guy, A. Iamnitc hi, C. Kesselmanand, W. Hoschek, M. Rip eanu,
B. Schwartzk opf, H. Stockinger, K. Stockinger, and B. Tierney . Giggle: A Framework for Constructing
Scalable Replica Location Services. In SC'2002, Baltimore, USA, November 2002.

11. A. Chervenak, I. Foster, C. Kesselman, and C. Salisbury and S. Tuecke. The Data Grid: Towards an
Arc hitecture for the Distributed Management and Analysis of Large Scienti�c Datasets. Journal of
Network and Computer Applic ations , 23:187{200, 2001.

12. Europ ean DataGrid Pro ject. http://www.eu-datagrid.org.
13. EU DataGrid Pro ject. Description of Work. EU DataGrid Pro ject. Technical Annex V5, January 2002.
14. I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit. Intl. J. Supercomputer

Applic ations , 11(2):115{128, 1997.
15. I. Foster and C. Kesselman, editors. The Grid . Morgan Kaufmann, 1999.
16. The Global Grid Forum. http://www.ggf.org.
17. A. Grimsha w, W. Wulf, et al. The Legion Vision of a Worldwide Virtual Computer. Communic ations of

the ACM , 40(1):39{45, January 1997.
18. L. Guy, P. Kunszt, E. Laure, H. Stockinger, and K. Stockinger. Replica Management in Data Grids.

Technical report, GGF5 Working Draft, July 2002.
19. Guyton and M. Schwartz. Locating Nearby Copies of Replicated Internet Servers. In Proceeding of ACM

SIGCOMM'95 , 1995.
20. High Performance Fortran Language Speci�cation Version 2.0, January 1997.
21. I. Foster and C. Kesselman and S. Tuecke. The Anatom y of the Grid. The International Journal of High

Performanc e Computing Applic ations , 15(3):200{222, Fall 2001.
22. P. Kunszt, E. Laure, H. Stockinger, and K. Stockinger. Adv anced Replica Management with Reptor.

In International Conference on Paral lel Processing and Applie d Mathematics , Czestochowa, Poland,
September 2003. Springer-V erlag.

23. E. Laure. High Level Support for Distribute d High Performanc e Computing . PhD thesis, Institute for
Software Science, Univ ersity of Vienna, Austria, February 2001.

24. E. Laure. OpusJava: A Java Framework for Distributed High Performance Computing. Futur e Generation
Computer Systems, 18(2):235{251, Octob er 2001.

25. M. Livn y, J. Basney, R. Raman, and T. Tannenbaum. Mechanisms for High Throughput Computing.
SPEEDUP Journal , 11(1), 1997.

26. MessagePassing Interface Forum. MPI: A Message-Passing Interfac e Standard Version 1.1, June 1995.
27. K. Ranganathan and I. Foster. Simulation Studies of Computation and Data Scheduling Algorithms for

Data Grids,. Journal of Grid Computing , 1(1):53{62, 2003.
28. J. Schopf. Ten Actions When SuperScheduling. GGF Scheduling Request for Comments:8.5, July 2001.

Copyrigh t c 2004 John Wiley & Sons, Ltd. Concurr ency Computat.: Pract. Exper. 2004; 00 :0{0
Prepared using cpeauth.cls

20 E. LA URE, H. STOCKINGER, K. STOCKINGER

29. D. Skillicorn and D. Talia. Mo dels and Languages for Parallel Computation. ACM Computing Surveys,
30(2):123{169, June 1998.

30. H. Stockinger. Distributed Database Management Systems and the Data Grid. In 18th IEEE Symposium
on Mass Storage Systems and 9th NASA Goddard Conference on Mass Storage Systems and Technologies,
San Diego, California, April 17-20 2001.

31. H. Stockinger, O. Rana, R. Mo ore, and A. Merzky . Data Management in a Grid Environmen t. In European
High Performanc e Computing and Networking Conference (HPCN2001) , Amsterdam, The Nederlands,
June 25 - 27 2001.

32. H. Stockinger, K. Stockinger, E. Schikuta, and I. Willers. Towards a Cost Mo del for Distributed and
Replicated Data Stores. In 9th Euromicr o Workshop on Paral lel and Distribute d Processing PDP 2001,
IEEE Computer Society Press, Mantova, Italy , February 7-9 2001.

33. K. Stockinger, H. Stockinger, L. Dutk a, R. Slota, D. Nik olow, and J. Kito wski. AccessCost Estimation for
Uni�ed Grid Storage Systems. In 4th International Workshop on Grid Computing (Grid2003) , Phoenix,
Arizona, November 17 2003.

34. A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs. Iperf Version 1.7.0.
http://dast.nlanr.net/Pro jects/Ip erf/.

35. Unicore. http://www.unicore.org.
36. WP1|W orkload Management. De�nition of Arc hitecture, Technical Plan and Evaluation Criteria for

Scheduling, Resource Management, Security and Job Description. EU DataGrid Pro ject. Deliv erable
D1.2, September 2001.

37. WP10|Grid-a ware Biomedical Applications. Requirements for Grid-Aw are Biology Applications. EU
DataGrid Pro ject. Deliv erable D10.1, September 2001.

38. WP10|Grid-a ware Biomedical Applications. Report on the 1st Bio-T estbed Release. EU DataGrid
Pro ject. Deliv erable D10.3, April 2003.

39. WP12|Pro ject Management. The DataGrid Arc hitecture. EU DataGrid Pro ject. Deliv erable D12.4,
February 2002.

40. WP8|HEP Technical Working Group. Long Term Speci�cations of LHC Exp eriments. EU DataGrid
Pro ject. Deliv erable D8.1b, September 2001.

41. WP9|Earth Observation Applications. Requirements Speci�cation|EO Application Requirements for
GRID. EU DataGrid Pro ject. Deliv erable D9.1, August 2001.

Copyrigh t c 2004 John Wiley & Sons, Ltd. Concurr ency Computat.: Pract. Exper. 2004; 00 :0{0
Prepared using cpeauth.cls

